

Markscheme

May 2018

Biology

Standard level

Paper 2

14 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Extended response questions - quality of construction

- Extended response questions for SLP2 carry a mark total of [16]. Of these marks, [15] are awarded for content and [1] for the quality of the answer.
- [1] for quality is awarded when:
 - the candidate's answers are clear enough to be understood without re-reading.
 - the candidate has answered the question succinctly with little or no repetition or irrelevant material.

Section A

C	Questi	on	Answers	Notes	Total
1.	а	i	cricket ✓		1
	а	ii	25 – 4 = 21kg «more required for cattle» ✓	Must state unit kg.	1
1.	а	iii	cricket ✓		1
1.	b	i	a. mealworms have more isoleucine/leucine/valine than cattle 🗸		
			b. cattle have more lysine/methionine/phenylalanine/threonine ✓		1 max
			c. the total proportion of these amino acids is «slightly» greater in cattle (188 to 176) ✓		
1.	b	ii	a. cattle as they are more closely related to humans ✓		
			 b. cattle as they are more likely to have proteins with a similar amino acid composition to humans ✓ 	OWTTE.	1 max
			c. cattle as they contain a «slightly» higher proportion of «essential» amino acids required in human diet (188 to 176) ✓		
1.	С		a. mealworms contribute much less to global warming than other traditional farm livestock for protein production ✓	Accept converse or OWTTE.	2
			 b. mealworms require less land use than other traditional farm livestock for protein production ✓ 		2

(Question 1 continued)

G	uestion	Answers	Notes	Total
1.	d	 a. cell respiration required to generate heat (lost to environment) to maintain body temperature ✓ b. birds/chickens and mammals/cattle carry out cell respiration at higher rate than insects ✓ c. «chickens/cattle therefore» generate more CO₂ per kg protein produced ✓ d. «chickens/cattle» need more food/land area to produce body mass ✓ e. feed conversion ratios are lower in mealworms/insects/cold blooded animals as they do not need to maintain a constant body temperature (accept converse) ✓ 		2 max
1.	е	 a. insects/crickets have the highest edible percentage ✓ b. insects have the lowest feed conversion ratio/produce the most edible mass per kg of food they eat ✓ c. insects supply amino acids required in the human diet ✓ d. insects cause less global warming/use less land area per kg of protein produced ✓ e. in western countries, there is a disgust factor/cultural factors about eating insects which would need to be overcome before they could be used as a significant food source ✓ 		3 max
		f. insects may supply less proportions/content of amino acids required in human diets 🗸		

G	uestic	on	Answers	Notes	Total
2.	а		 a. I. cytosine ✓ b. II. sugar-phosphate/covalent/phosphodiester bond ✓ c. III. phosphate ✓ d. IV. deoxyribose ✓ 	Award [1] for any two correct responses.	2 max
2.	b	i	 a. decided to combine what was known about chemical content of DNA with information from X-ray diffraction studies ✓ b. built scale models of components of DNA ✓ c. then attempted to fit them together in a way that agreed with the data «from separate sources» ✓ d. made several arrangements of scale model until found best one that fitted all the data ✓ a. associated with «histone» proteins in eukaryotes but not prokaryotes ✓ 	OWTTE.	2 max
2.	С	i	 b. is linear in eukaryotes but circular in prokaryotes ✓ c. in cytoplasm in prokaryotes, but within nucleus in eukaryotes. ✓ unwinds/separates strands/double helix (by breaking hydrogen bonds) ✓ 		1 max
2.	С	ii	 a. links nucleotides together to form a new strand of DNA ✓ b. uses pre-existing strand of DNA as template ✓ c. makes covalent bonds between nucleotides ✓ 		2

C	Questi	on			Answers	Notes	Total
3.	а	i		ell wall √ ucleus/chromatin √		Both needed.	1
3.	а	ii	b. co	ontains chlorophyll to absorb light	erts light energy into chemical energy ✓ ✓ of carbohydrate/glucose/starch ✓		2 max
3.	а	iii	_	roduce flowers ✓ nclosed seeds/have fruit ✓			1 max
3.	b			autotroph	heterotroph	Table format not required.	
			a.	inorganic source of carbon	organic source of carbon compounds ✓	Must be paired	
			b.	synthesizes organic molecules from inorganic sources ✓	obtains organic molecules from other organisms/cannot make organic molecules from inorganic ✓	statements.	2
			C.	autotrophs photosynthesise/require light (or chemicals) for building its own nutrients ✓	heterotrophs require chemical energy from ingested nutrients ✓		

(Question 3 continued)

C	uestion	Answers	Notes	Total
3.	С	a. energy enters ecosystems from the Sun / continuous supply from the Sun ✓		
		 b. light energy is converted into chemical energy and lost with movement along food chains OR energy needs to be «constantly» added «to ecosystem» as lost with movement along food chains / energy lost as heat with movement along food chains ✓ 		3 max
		c. nutrients are recycled within ecosystems / nutrients in an ecosystem are finite and limited ✓		Sillax
		d. nutrients not lost but transformed into different compounds ✓		
		e. nutrients «carbon compounds»/energy flow through food chains by means of feeding ✓		

C	Questic	n Answers	Notes	Total
4.	a	 a. axes labelled correctly: x-axis as temperature <i>AND</i> y-axis as rate of reaction/enzyme activity ✓ b. correct shape of graph: increases gradually to max and then decreases more rapidly ✓ 	rate of reaction temperature Fall should be at least twice as steep as rise.	2
4.	b	 a. enzymes are proteins with specific 3-D geometry/shape ✓ b. enzymes with active site that binds with the substrate/reactants ✓ c. active site shape only allows it to bind with specific substrates «with complementary shapes» ✓ d. when enzyme-substrate complex formed allows reaction to occur ✓ e. products are released and enzyme returns to original shape and can be reused OR denaturing changes shape «of active site» so changes ability to bind with substrate ✓ 	Accept marks from clear annotated diagrams.	3 max

Section B

Clarity of communication: [1]

The candidate's answers are clear enough to be understood without re-reading. The candidate has answered the question succinctly with little or no repetition or irrelevant material.

G	uestic	on	Answers	Notes	Total
5.	а			Award [1] for each structure clearly drawn and correctly labelled.	
			a. <u>phospholipid bilayer</u> – with head and tails ✓		
			b. hydrophilic/phosphate/polar heads <i>AND</i> hydrophobic/hydrocarbon/fatty acid/non-polar tails labelled ✓	Both needed.	
			c. <u>integral/intrinsic protein</u> – embedded in the phospholipid bilayer ✓		4 max
			d. <u>protein channel</u> – integral protein showing clear channel/pore ✓		4 IIIax
			e. <u>peripheral/extrinsic protein</u> – on the surface ✓		
			f. glycoprotein with carbohydrate attached ✓		
			g. <u>cholesterol</u> – shown embedded in bilayer ✓		

(Question 5 continued)

Q	uestion	Answers	Notes	Total
5.	b	a. «simple» diffusion of nutrients along/down a concentration gradient ✓		
		b. example of simple diffusion, <i>eg</i> : fatty acids ✓		
		c. facilitated diffusion of nutrients involves movement through <u>channel proteins</u> ✓		
		d. example of nutrient for facilitated diffusion <i>eg</i> : fructose ✓		4 max
		e. active transport of nutrients against a concentration gradient / involving protein pumps ✓		4 Illax
		f. example of active transport, eg: (iron) ions/glucose/amino acids ✓		
		g. endocytosis / by means of vesicles ✓		
		h. example of nutrient for endocytosis, eg: cholesterol in lipoprotein particles ✓		

(Question 5 continued)

C	Question	Answers	Notes	Total
5.	C	 a. nerve impulses are action potentials propagated along axons of neurons ✓ b. resting potential is -70 mV OR relatively negative inside in comparison to the outside ✓ c. Na*/K* pumps maintain/re-establish «the resting potential» ✓ d. more sodium ions outside than inside «when at the resting potential» OR more potassium ions inside than outside «when at the resting potential» ✓ e. action potential stimulates «wave of» depolarization along the membrane/axon ✓ f. «when neuron is stimulated» if threshold potential is reached Na* channels open ✓ g. sodium ions diffuse/move in ✓ h. «Na* move in» causing depolarization / inside of the neuron becomes more positively charged than the outside of the neuron ✓ i. potassium ion channels open OR potassium ions diffuse/move out ✓ j. «K* move out» causing repolarization ✓ k. local currents OR description of Na* ion diffusion between depolarized region and next region of axon to depolarize ✓ l. myelination increases propagation speed/allows saltatory conduction ✓ 	Accept any of the points clearly explained in an annotated diagram.	7 max
		depolarize ✓ I. myelination increases propagation speed/allows saltatory conduction ✓		

(Plus up to [1] for quality)

Question		Answers	Notes	Total
6.	а	 a. decomposition of dead organic material «by saprotrophic bacteria» ✓ b. «decomposition» leads to CO₂ formation/regeneration due to respiration ✓ c. «saprotrophic bacteria only» partially decompose dead organic matter in acidic/anaerobic conditions in waterlogged soil ✓ d. results in peat formation in bogs/swamps ✓ 		3 max
		e. photosynthetic bacteria/cyanobacteria fix CO₂ in photosynthesis ✓		
6.	b	 a. problem results from excessive use of antibiotics by doctors/veterinarians/in livestock <i>OR</i> low antibiotic doses taken by patients (not finishing treatment) ✓ b. natural variation exists in any population of bacteria making some resistant to a specific antibiotic ✓ c. variation arises from mutation <i>OR</i> antibiotic resistance can be transferred between bacteria by plasmids ✓ d. antibiotic kills all bacteria except those that are resistant ✓ e. resistant bacteria survive, reproduce and pass on resistance to offspring ✓ f. soon population is made of mainly antibiotic resistant bacteria ✓ g. this is an example of natural selection «increasing frequency of characteristics that make individuals better adapted to environment» ✓ 		4 max

(Question 6 continued)

Question	Answers	Notes	Total
Question 6. c	Answers a. genetic modification carried out by gene transfer between species ✓ b. genes transferred from one organism to another produce the same protein/amino acid sequence ✓ c. due to universality of genetic code OR organisms use same codons of mRNA to code for specific amino acids ✓ d. mRNA for required gene extracted/identified ✓ e. DNA copies of mRNA made using reverse transcriptase ✓ f. PCR used (to amplify DNA to be transferred) ✓ g. genes/DNA transferred from one species to another using a vector ✓ h. plasmid acts as vector to transfer genes to bacteria/E. coli ✓	Notes Accept any of the points clearly explained in an annotated diagram.	Total
	 i. plasmid cut open at specific base sequences using restriction endonuclease <i>OR</i> plasmid cut to produce blunt ends then extra cytosine/C nucleotides added <i>OR</i> sticky ends made by adding extra guanine/G nucleotides <i>OR</i> mention of sticky ends if not gained already ✓ j. cut plasmids mixed with DNA copies stick together (due to complementary base pairing) ✓ k. DNA ligase makes sugar-phosphate bonds to link nucleotides of gene with those of plasmid ✓ l. bacteria that take up plasmid are identified ✓ m. (genetically modified) bacteria will reproduce carrying the transferred gene ✓ n. example – <i>eg</i>: as production of human insulin using <i>E. coli</i> bacteria ✓ 		8 max

(Plus up to [1] for quality)